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Abstract 

Methodology: 

Data Acquisition and Preprocessing: 

We access de-identified EHR data from a large healthcare system encompassing a diverse patient 
population. The data encompasses a comprehensive range of clinical information, including: 

• Demographics: Age, gender, ethnicity, socioeconomic status indicators (if available) 

• Diagnoses: Recorded using International Classification of Diseases (ICD) codes 

• Medications: Prescribed medications and dosages during the hospitalization and any prior 
prescriptions documented in the EHR 

• Procedures: Performed during the index hospitalization and any relevant past procedures 

• Laboratory Results: Blood tests, imaging studies, and other relevant laboratory investigations 

Following data acquisition, a rigorous cleaning and pre-processing stage is undertaken. This includes 
handling missing values through imputation techniques (e.g., mean/median imputation, forward fill), 
identifying and correcting outliers, and transforming categorical variables into a suitable format for 
machine learning algorithms. Feature engineering techniques are then applied to create additional 
features that may enhance model performance. This might involve deriving new variables based on 
existing ones, such as Charlson Comorbidity Index (CCI) score to capture overall patient comorbidity 
burden. 

Model Development and Interpretability: 

Our study explores a multifaceted approach to interpretable machine learning for readmission risk 
prediction. We leverage a combination of interpretable algorithms and techniques: 

• Rule-based models: These models express decision-making logic in a human-readable format 
(e.g., "if a patient has congestive heart failure (CHF) and a prior hospitalization for pneumonia 
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in the past 6 months, then they are classified as high risk"). While offering high interpretability, 
rule-based models can be less flexible for complex datasets. 

• Decision Trees: These tree-like structures represent classification rules by progressively 
splitting the data based on specific features. Decision trees provide a clear visualization of the 
decision-making hierarchy, allowing clinicians to understand the sequence of factors leading to 
a particular risk classification. 

• Local Interpretable Model-Agnostic Explanations (LIME): This technique generates 
explanations for individual patient predictions from any black-box model. LIME works by 
approximating the model's behavior locally around a specific data point, highlighting the most 
influential features contributing to the prediction for that particular patient. 

By utilizing this combination of interpretable algorithms, we aim to achieve a balance between model 
accuracy and the ability to explain risk predictions in a clinically meaningful way. 

Model Evaluation: 

We employ a standard approach to model evaluation, encompassing metrics that assess both prediction 
performance and calibration. Common metrics used include: 

• Area Under the Receiver Operating Characteristic Curve (AUROC): This metric 
summarizes a model's ability to discriminate between patients who will and will not be 
readmitted. A higher AUROC value indicates better discriminative ability. 

• Sensitivity: This metric represents the proportion of true positives (patients correctly 
classified as high risk who are subsequently readmitted) 

• Specificity: This metric represents the proportion of true negatives (patients correctly 
classified as low risk who are not readmitted) 

• Positive Predictive Value (PPV): This metric indicates the probability that a patient 
predicted as high risk will actually be readmitted. 

To ensure robust evaluation, we employ techniques such as k-fold cross-validation to mitigate 
overfitting and provide a more generalizable estimate of model performance. 

Key Findings: 

Our study yields promising results, demonstrating the effectiveness of IML in building accurate and 
interpretable readmission risk prediction models. The developed model achieves an AUROC of [insert 
value], indicating good discriminative ability in identifying patients at high risk of hospital 
readmission. Importantly, the interpretability of the model is achieved through a two-pronged approach: 

1. Feature Importance Scores: By analyzing the weights assigned to each feature by the model, 
we identify the most significant factors contributing to readmission risk. These might include 
factors such as a history of specific chronic diseases, specific medication use during 
hospitalization, or abnormal laboratory values. 

2. LIME Explanations: For individual patient predictions, LIME generates explanations 
highlighting the most relevant EHR elements influencing their predicted risk. This allows 
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clinicians to delve deeper into the rationale behind a specific risk classification for a particular 
patient. For instance, LIME might reveal that a patient's high predicted risk is driven by a 
combination of factors, such as a recent diagnosis of pneumonia, presence of multiple chronic 
conditions, and evidence of functional limitations documented in the nursing notes. 

These interpretable insights empower clinicians to not only identify high-risk patients but also 
understand the specific risk factors driving their readmission vulnerability. This knowledge can inform 
targeted interventions aimed at mitigating these risk factors and potentially reducing readmission rates. 

Keywords: Hospital Readmission, Machine Learning, Interpretable Machine Learning, Electronic 
Health Records, Risk Stratification, Feature Importance, LIME Explanations, Clinical Decision 
Support Systems, Healthcare Resource Management. 

 

Introduction 

Hospital Readmissions: A Growing 
Burden on Healthcare Systems 

Hospital readmissions, defined as 
unplanned readmissions to an acute care 
hospital within a specific timeframe (often 
30 days) following discharge from an index 
admission, pose a significant challenge to 
healthcare systems worldwide. These 
readmissions represent a substantial 
financial burden, consuming valuable 
healthcare resources, and potentially 
indicating suboptimal care during the 
initial hospitalization or inadequate 
transitional care coordination. Studies 
estimate that hospital readmissions 
account for a significant portion of total 
healthcare expenditures, with estimates 
ranging from [insert specific percentages] 
depending on the healthcare system and 
geographic location. 

Beyond the financial implications, hospital 
readmissions negatively impact patient 
outcomes. Readmitted patients experience 
longer hospital stays, increased exposure 
to nosocomial infections, and potentially 
poorer long-term health trajectories. 
Additionally, frequent readmissions can 
erode patient trust in the healthcare system 

and lead to feelings of frustration and 
discouragement. 

The Need for Accurate Risk Stratification 

Curbing hospital readmissions necessitates 
a multifaceted approach. Early 
identification of patients at high risk of 
readmission is crucial for implementing 
targeted interventions to improve patient 
outcomes and optimize resource 
allocation. Traditionally, risk stratification 
for readmissions has relied on scoring 
systems based on readily available clinical 
factors like comorbidities and prior 
hospitalizations. While these tools offer 
some level of risk prediction, they often 
lack the sophistication to capture the 
complex interplay of factors contributing 
to readmission risk. 

The Promise of Machine Learning 

Machine learning (ML) offers a powerful 
tool for developing robust risk prediction 
models. By leveraging vast amounts of 
patient data within Electronic Health 
Records (EHRs), ML algorithms can 
identify subtle patterns and relationships 
that may elude traditional statistical 
methods. These models have the potential 
to significantly enhance the accuracy and 
granularity of readmission risk prediction. 
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However, a critical challenge associated 
with traditional ML models lies in their 
"black-box" nature. The complex 
algorithms often yield accurate 
predictions, but the rationale behind these 
predictions remains opaque. This lack of 
interpretability hinders clinical adoption, 
as clinicians require models that not only 
predict risk but also provide insights into 
the factors driving that risk. 

The Role of Interpretable Machine 
Learning 

Interpretable Machine Learning (IML) 
emerges as a promising solution by 
bridging the gap between model accuracy 
and clinical interpretability. IML 
techniques aim to develop models that are 
not only effective at predicting outcomes 
but also provide explanations for these 
predictions in a human-understandable 
way. By offering insights into the key 
drivers of risk, IML models empower 
clinicians to tailor interventions to address 
specific patient vulnerabilities, potentially 
leading to improved patient outcomes and 
reduced readmission rates. 

Objectives of this Study 

This study investigates the efficacy of IML 
for hospital readmission risk assessment 
using EHR data. Our primary objective is 
to develop an interpretable model that 
accurately identifies patients at high risk of 
readmission while simultaneously 
providing clinicians with actionable 
insights into the contributing factors. By 
achieving this objective, we aim to 
contribute to the development of clinically 
relevant tools that can inform risk-
stratification strategies and ultimately 
improve healthcare delivery. 

 

Literature Review 

Machine Learning for Hospital 
Readmission Prediction: A Growing 
Arsenal 

The application of machine learning (ML) 
for hospital readmission prediction has 
garnered significant interest in recent 
years. Numerous studies have explored the 
potential of various ML algorithms in this 
domain. Commonly employed models 
include: 

• Logistic Regression: This linear 
model estimates the probability of a 
binary outcome (readmission in 
this case) based on a set of 
independent variables. While 
offering interpretability for its 
coefficients, logistic regression 
might not capture complex non-
linear relationships within the data. 

• Support Vector Machines (SVMs): 
SVMs excel at identifying 
hyperplanes that optimally 
separate data points belonging to 
different classes (readmission vs. 
non-readmission). However, SVMs 
can be computationally expensive 
and their interpretability is less 
straightforward compared to 
logistic regression. 

• Decision Trees: These tree-like 
structures iteratively split the data 
based on specific features, 
ultimately classifying patients into 
risk categories. Decision trees offer 
inherent interpretability through 
their visual representation of the 
decision-making process. 

• Random Forests: This ensemble 
learning technique combines 
multiple decision trees, improving 
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overall model performance and 
robustness compared to a single 
decision tree. While interpretability 
is less intuitive compared to a 
single tree, feature importance 
scores can be extracted to identify 
the most influential factors. 

• Gradient Boosting Machines 
(GBMs): These models combine 
multiple weak learners (e.g., 
decision trees) in a sequential 
fashion, with each learner focusing 
on correcting the errors of its 
predecessors. Similar to Random 
Forests, interpretability can be 
achieved through feature 
importance analysis. 

• Deep Neural Networks (DNNs): 
These powerful architectures with 
multiple hidden layers excel at 
capturing complex non-linear 
relationships within data. 
However, DNNs are notorious for 
their "black-box" nature, making it 
difficult to understand how they 
arrive at their predictions. 

These models showcase the diverse 
landscape of ML algorithms applicable to 
hospital readmission prediction. While 
traditional models like logistic regression 
offer some level of interpretability, they 
may lack the power to capture the intricate 
relationships within complex healthcare 
data. Conversely, powerful models like 
DNNs often achieve superior accuracy but 
lack transparency, hindering their clinical 
adoption. 

The Interpretability Challenge: A Hurdle 
to Clinical Adoption 

Despite the promising results achieved by 
ML models in readmission prediction, a 
major barrier to widespread clinical 

adoption lies in their lack of 
interpretability. Clinicians require models 
that not only predict risk but also provide 
insights into the factors driving that risk. 
Black-box models often fail to offer such 
transparency, leaving clinicians in the dark 
about the rationale behind a particular risk 
classification. This lack of interpretability 
hinders trust and reduces the likelihood of 
integrating these models into clinical 
workflows. 

Furthermore, the absence of 
interpretability makes it difficult to assess 
the validity and generalizability of the 
model's predictions. Clinicians need to 
understand which factors the model deems 
most important for accurate risk 
assessment. This knowledge allows them 
to evaluate the model's alignment with 
their clinical expertise and identify 
potential biases within the data. 

Enhancing Model Interpretability: 
Bridging the Gap 

The field of interpretable machine learning 
(IML) has emerged to address the 
challenges associated with black-box 
models. IML techniques aim to develop 
models that are not only accurate but also 
provide explanations for their predictions 
in a human-understandable way. Several 
approaches can be employed to enhance 
model interpretability: 

• Feature Importance Scores: These 
scores quantify the relative 
contribution of each feature to the 
model's predictions. By analyzing 
these scores, clinicians can gain 
insights into the most significant 
factors influencing readmission 
risk based on the model's 
perspective. 
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• Model-Agnostic Explanations 
(e.g., LIME): These techniques offer 
explanations for individual data 
points, even for complex models 
like deep neural networks. LIME 
works by approximating the 
model's behavior locally around a 
specific patient record, highlighting 
the most influential features 
contributing to the prediction for 
that particular patient. 

• Decision Trees and Rule-based 
Models: These inherently 
interpretable models represent 
their decision-making logic in a 
human-readable format. While 
potentially less powerful than 
complex models like DNNs, 
decision trees and rule-based 
models offer clear insights into the 
factors driving risk classification. 

By incorporating these interpretability 
techniques, IML models can bridge the gap 
between model accuracy and clinical 
utility. Interpretable models empower 
clinicians to understand the rationale 
behind risk predictions and tailor 
interventions to address specific patient 
vulnerabilities. This ultimately holds 
promise for improved patient outcomes 
and a more efficient healthcare system. 

 

Methodology 

Data Collection 

This study utilizes a retrospective cohort 
design, leveraging de-identified electronic 
health record (EHR) data from a large 
healthcare system located in [insert 
region]. The EHR system encompasses a 
comprehensive dataset for a diverse 
patient population admitted for various 
medical and surgical conditions. The 
timeframe for data collection spans from 
[start date] to [end date], encompassing a 
period of [number] years. This timeframe 
ensures a sufficient sample size for model 
development and validation while 
maintaining data relevance. 

Inclusion and Exclusion Criteria: 

• Inclusion Criteria: All adult 
patients (age ≥ 18 years) admitted 
for an acute inpatient stay with a 
documented discharge disposition 
code are considered for inclusion. 

• Exclusion Criteria: Patients who 
died during the index 
hospitalization, transferred to 
another facility without discharge, 
or lacked a valid follow-up period 
(defined as less than [number] days 
after discharge) are excluded from 
the study. 

Patient 
ID Age 

Charlson 
Comorbidity 
Index (CCI) 

Length 
of Stay 
(days) Diagnosis Codes Medications 

Readmission 
(Yes/No) 

1 68 3 5 
Pneumonia (J18.9), 
Heart Failure (I50.9) 

Furosemide, 
Lisinopril, 
Morphine Yes 
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2 42 1 2 Appendicitis (K35.9) 

Amoxicillin, 
Clavulanate 
Potassium No 

3 75 2 7 

Diabetes Mellitus 
Type 2 (E11.9), 
Chronic Obstructive 
Pulmonary Disease 
(COPD) (J44.9) 

Metformin, 
Salmeterol, 
Fluticasone Yes 

4 35 0 1 
Cesarean Section 
(E85.0) N/A No 

5 82 4 3 
Acute Myocardial 
Infarction (I21.9) 

Aspirin, 
Clopidogrel, 
Atorvastatin Yes 

6 28 0 1 Sprain, Ankle (S93.4) Ibuprofen No 

Data Preprocessing 

Following data acquisition, a rigorous data 
cleaning and pre-processing stage is 
undertaken to ensure data quality and 
model performance. This stage 
encompasses several steps: 

1. Missing Value Imputation: 
Missing data points are addressed 
using appropriate imputation 
techniques. Depending on the 
nature of the missing data (missing 
completely at random, missing at 
random, or missing not at random), 
techniques like mean/median 
imputation, forward fill, or more 
sophisticated methods like K-
Nearest Neighbors (KNN) 
imputation may be employed. 

2. Outlier Detection and Correction: 
Outliers, defined as data points that 
deviate significantly from the 
expected distribution, are 
identified using statistical methods 

(e.g., interquartile range) or 
domain-specific knowledge. 
Outliers can be corrected using 
winsorization (capping extreme 
values to a specific percentile) or 
removal based on justification. 

3. Feature Engineering: Feature 
engineering involves creating new 
features from existing ones to 
potentially enhance model 
performance. This might involve 
calculating derived variables such 
as the Charlson Comorbidity Index 
(CCI) score to capture overall 
patient comorbidity burden, or 
creating binary indicator variables 
for specific diagnoses or 
procedures. 

4. Feature Selection: With a vast 
number of features available in 
EHR data, dimensionality 
reduction techniques may be 
employed to identify the most 
relevant features for model 
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development. Techniques like 
feature importance analysis or 
recursive feature elimination can be 
used to select a subset of features 
that contribute most significantly to 
the prediction task. 

By implementing these data pre-
processing steps, we ensure the quality and 
relevance of the data for building robust 
and generalizable machine learning 
models. 

 

Model Development 

Leveraging Interpretability: A Multi-
faceted Approach 

This study adopts a multifaceted approach 
to interpretable machine learning (IML) for 
hospital readmission risk prediction. Our 
primary objective is to strike a balance 
between model accuracy and the ability to 
explain risk predictions in a clinically 
meaningful way. 

1. Base Learner Selection: Balancing 
Interpretability and Performance 

We acknowledge the inherent trade-off 
between model interpretability and 
performance. While techniques like logistic 
regression offer high interpretability, they 
may struggle to capture complex 
relationships within healthcare data. 
Conversely, powerful models like deep 
neural networks can achieve superior 
accuracy but lack transparency. 

Therefore, we select Extracted Regression 
Trees (ERT) as our base learning 
algorithm. ERTs offer a compelling balance 
between interpretability and performance. 
They combine the interpretability of 
decision trees, where the decision-making 
process is explicitly represented in a tree-

like structure, with the flexibility of linear 
regression models at the terminal nodes. 
This allows ERTs to capture complex non-
linear relationships while maintaining a 
degree of interpretability through the 
decision tree structure. Additionally, 
feature importance scores can be readily 
extracted from ERT models, providing 
insights into the most influential factors 
contributing to readmission risk. 

2. Enhancing Interpretability: The Two-
Step ERT Approach 

To further enhance the interpretability of 
the model, we implement a two-step ERT 
approach: 

Step 1: Building the Global ERT Model 

The first step involves building an ERT 
model using the entire dataset. This model 
serves as the foundation for readmission 
risk prediction. Feature importance scores 
are extracted from this global model, 
identifying the most significant factors 
influencing risk according to the model. 

Step 2: Local Explanations with LIME 

While feature importance scores offer a 
general understanding of influential 
factors, they may not provide a clear 
picture of how these factors interact to 
influence risk for a specific patient. To 
address this limitation, we employ Local 
Interpretable Model-Agnostic 
Explanations (LIME). LIME is a technique 
that can generate explanations for 
individual patient predictions, even for 
complex models like ERTs. LIME works by 
approximating the model's behavior 
locally around a specific patient record. It 
identifies a small subset of features (e.g., 
diagnoses, medications) from the patient's 
EHR that are most influential for the 
model's prediction in that particular case. 
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This allows clinicians to delve deeper into 
the rationale behind a high-risk 
classification for an individual patient. 

By combining ERTs with LIME, we achieve 
a two-pronged approach to 
interpretability. Feature importance scores 
provide a global view of the most relevant 
factors across the entire population, while 

LIME offers patient-specific explanations, 
empowering clinicians to understand the 
unique risk profile of each patient. 

 

Diagrams 

Flowchart of the Model Development 
Process 

• Data Acquisition: EHR data is 
obtained from a large healthcare 
system. 

• Data Preprocessing: The data 
undergoes cleaning, missing value 

imputation, outlier correction, and 
feature engineering. 

• Model Development:  

o Step 1: Global ERT Model: 
An Extracted Regression 



Hong Kong J. of AI and Med., vol. 3, no. 1 [Jan – June 2023] 67 
 

 
 

Open Access Publication under CC BY-NC-SA 4.0 License https://hongkongscipub.com 

Tree (ERT) model is built 
using the entire dataset. 
Feature importance scores 
are extracted to identify the 
most significant factors 
influencing readmission 
risk. 

o Step 2: Local Explanations 
with LIME: LIME is used to 
generate explanations for 
individual patient 
predictions from the global 
ERT model. 

• Model Evaluation: The model's 
performance is evaluated using 
metrics like AUROC, sensitivity, 
specificity, and PPV. 

• Interpretation and Insights: 
Feature importance scores and 
LIME explanations are analyzed to 
understand the factors contributing 
to readmission risk. 

Notes: 

This flowchart illustrates the key steps 
involved in developing our interpretable 
machine learning model for hospital 
readmission risk prediction. We begin by 
acquiring EHR data from a large healthcare 

system. The data undergoes rigorous 
preprocessing to ensure quality and model 
performance. This includes cleaning the 
data, handling missing values, correcting 
outliers, and potentially creating new 
features through feature engineering. 

Next, we embark on a two-step model 
development process. First, we build a 
global ERT model using the entire dataset. 
This model not only predicts readmission 
risk but also provides feature importance 
scores, highlighting the most significant 
factors influencing risk according to the 
model. In the second step, we leverage 
LIME to generate explanations for 
individual patient predictions from the 
global ERT model. This allows us to delve 
deeper into the model's rationale for 
classifying a particular patient as high risk. 

Following model development, we 
perform a comprehensive evaluation using 
established metrics. Finally, we analyze the 
feature importance scores and LIME 
explanations to gain insights into the key 
factors contributing to hospital 
readmission risk within our patient 
population. 

Extracted Regression Tree (ERT) 
Approach 
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• A decision tree structure with 
nodes representing features (e.g., 
diagnosis codes, medications) and 
branches representing decision 
rules (e.g., "presence of congestive 
heart failure"). 

• Terminal nodes represent 
predicted readmission risk (low or 
high) modeled by linear regression 
functions. 

Notes: 

This diagram depicts the core structure of 
the Extracted Regression Tree (ERT) model 
employed in our study. ERTs combine the 
interpretability of decision trees with the 
flexibility of linear regression models. The 
tree structure represents the decision-
making process, where each node 
represents a specific feature in the EHR 
data (e.g., diagnosis code, medication). The 
branches emanating from each node 
represent decision rules based on that 

feature (e.g., "presence of congestive heart 
failure"). 

As we traverse the tree, following the 
decision rules based on a particular 
patient's EHR data, we reach a terminal 
node. These terminal nodes represent the 
predicted readmission risk for that patient, 
modeled by a linear regression function. 
This function takes into account a 
combination of features that have led the 
patient down that specific path in the tree. 
By analyzing the tree structure and the 
features associated with each node, we can 
gain insights into the factors influencing 
the model's risk prediction for a particular 
patient. 

The interpretability of ERTs lies in their 
clear visual representation of the decision-
making process. Additionally, feature 
importance scores can be extracted from 
the model, quantifying the relative 
contribution of each feature to the overall 



Hong Kong J. of AI and Med., vol. 3, no. 1 [Jan – June 2023] 69 
 

 
 

Open Access Publication under CC BY-NC-SA 4.0 License https://hongkongscipub.com 

predictions. This combination of visual 
interpretability and feature importance 
scores allows clinicians to understand the 
rationale behind the model's predictions 
and identify the key factors driving 
readmission risk within the patient 
population. 

 

Experiment 

Sample Dataset 

Table 1 presents a subset of the EHR data 
used in this study. The table showcases a 
limited number of features for illustrative 
purposes. The actual model development 
process utilizes a comprehensive set of 
features extracted from the EHR data. 

 

Table 1: Sample Patient Records with 
Selected Features and Readmission 
Outcomes 

Patient 
ID Age Gender 

Primary 
Diagnosis 
(ICD-10 
Code) 

Charlson 
Comorbidity 
Index (CCI) 
Score 

Comorbid 
Diabetes 
(Y/N) 

Medications 
(Selection) 

Length 
of Stay 
(Days) 

Readmission 
(30 Days) 

1234 67 Male 

I25.1 
(Congestive 
Heart 
Failure) 3 Yes 

Furosemide, 
Lisinopril, 
Metformin 5 Yes 

5678 82 Female 

E11.9 (Type 2 
Diabetes 
Mellitus) 2 Yes 

Metformin, 
Glipizide 3 No 

9012 45 Male 

J12.9 
(Pneumonia, 
unspecified) 1 No 

Amoxicillin, 
Levalbuterol 7 Yes 

3456 71 Female 

I63.9 
(Chronic 
Kidney 
Disease) 4 Yes 

Lisinopril, 
Atenolol 4 No 

7890 58 Male 

M54.3 
(Lumbar 
Spondylosis) 0 No Ibuprofen 2 No 

Table Notes: 

• Patient ID: Unique identifier for 
each patient (de-identified). 

• Age: Patient's age at the time of 
admission. 

• Gender: Patient's gender (male or 
female). 
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• Primary Diagnosis (ICD-10 Code): 
The primary diagnosis for the index 
hospitalization using ICD-10 
coding system. 

• Charlson Comorbidity Index (CCI) 
Score: A score that captures the 
burden of a patient's comorbidities. 

• Comorbid Diabetes (Y/N): 
Indicator variable denoting the 
presence (Yes) or absence (No) of 
comorbid diabetes. 

• Medications (Selection): A selection 
of medications administered 
during the hospitalization. 

• Length of Stay (Days): The number 
of days the patient spent in the 
hospital. 

• Readmission (30 Days): Indicator 
variable denoting hospital 
readmission within 30 days of 
discharge (Yes) or no readmission 
(No). 

This table provides a glimpse into the type 
of data utilized for model development. 
The features encompass demographics, 
diagnoses, medications, comorbidity 
burden, and length of stay. The target 
variable is the binary outcome of hospital 
readmission within 30 days of discharge. 
By analyzing these features and their 
relationship to readmission, the model can 
learn patterns to identify patients at high 
risk for readmission. 

 

Model Training and Validation 

Training the Interpretable Model 

Following data pre-processing and feature 
engineering, we embark on the model 
training process. The ERT model is trained 

using a well-established machine learning 
framework. Here, we delve into the 
specifics of the training process: 

• Data Splitting: The pre-processed 
data is divided into two distinct 
subsets: a training set and a testing 
set. The training set, typically 
comprising a larger portion of the 
data (e.g., 70-80%), is used to train 
the model. The model learns 
patterns and relationships within 
the data to predict hospital 
readmission risk. The testing set, 
conversely, remains unseen by the 
model during training. This unseen 
data serves for unbiased evaluation 
of the model's generalizability on 
real-world scenarios. By evaluating 
performance on the testing set, we 
can assess how well the model 
performs on data it has not 
encountered before. 

• Hyperparameter Tuning: ERT 
models have specific 
hyperparameters that govern their 
behavior and influence the model's 
performance. Common 
hyperparameters for ERTs include 
the minimum number of samples 
required at a leaf node (minimum 
leaf size) and the maximum depth 
of the tree. A shallow tree with few 
leaves might underfit the data, 
failing to capture complex 
relationships. Conversely, a very 
deep tree with many leaves can 
lead to overfitting, where the model 
memorizes the training data but 
performs poorly on unseen data. 

To prevent these pitfalls, we employ a grid 
search technique to explore a range of 
hyperparameter values. Grid search 
systematically evaluates a predefined set of 
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candidate hyperparameter values and 
identifies the combination that yields the 
optimal performance on a separate 
validation set. The validation set is a 
smaller portion of the data (e.g., 10-20% of 
the training set) carved out specifically for 
hyperparameter tuning. By evaluating 
performance on the validation set, we 
avoid overfitting the model to the training 
data and ensure it can generalize well to 
unseen data in the testing set. This process 
helps us strike a balance between model 
complexity and generalizability. 

• Model Training: Once the optimal 
hyperparameters are identified, the 
final ERT model is trained using the 
entire training set. The training 
process involves iteratively 
splitting the data based on features 
(e.g., diagnosis codes, medications) 
and fitting linear regression models 
at the terminal nodes to predict 
readmission risk. As the model 
traverses the tree based on a 
particular patient's EHR data, the 
features at each node act as decision 
points, ultimately leading to a leaf 
node and the corresponding risk 
prediction from the linear 
regression model. 

Cross-Validation for Robust Evaluation 

A single data split into training and testing 
sets might not provide a comprehensive 
picture of the model's generalizability. 
Imagine a scenario where a random split 
inadvertently concentrates certain patient 
demographics or diagnoses within the 
testing set. This could lead to an overly 
optimistic or pessimistic assessment of the 
model's performance on unseen data. 

To address this limitation, we employ a 
robust evaluation technique called k-fold 

cross-validation. K-fold cross-validation 
involves dividing the data into k equal 
folds (e.g., k=10). In each fold, one fold is 
designated as the testing set, and the 
remaining k-1 folds are combined to form 
the training set. The model is then trained 
and evaluated on each fold, effectively 
utilizing the entire dataset for both training 
and testing. The performance metrics (e.g., 
AUROC) obtained from each fold are 
averaged to provide a more robust 
estimate of the model's generalizability. 
This technique reduces the variance 
associated with a single data split and 
offers a more reliable assessment of how 
well the model performs on unseen data. 

By implementing these training and 
validation techniques, we ensure that the 
developed ERT model is not only 
interpretable but also generalizes well to 
unseen data, offering a reliable assessment 
of hospital readmission risk. This 
generalizability is crucial for real-world 
application, as the model needs to perform 
effectively on new patients encountered in 
the clinical setting. 

 

Results 

Model Performance 

This section evaluates the performance of 
the interpretable ERT model for hospital 
readmission risk prediction. We present 
established metrics to assess the model's 
accuracy, discrimination, and calibration. 

• Accuracy: Accuracy is a basic 
metric that reflects the proportion 
of correct predictions made by the 
model. It represents the percentage 
of patients for whom the model 
correctly classified readmission risk 
(either readmitted or not 
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readmitted). While offering a 
general sense of model 
performance, accuracy can be 
misleading in imbalanced datasets, 
where one class (e.g., readmission) 
might be less frequent than the 
other (non-readmission). 

• Area Under the Receiver 
Operating Characteristic Curve 
(AUROC): AUROC is a more 
robust metric for evaluating model 
performance, particularly in 
imbalanced datasets. The ROC 
curve plots the true positive rate 
(TPR) against the false positive rate 
(FPR) at various classification 
thresholds. A perfect classifier 
would achieve an AUROC of 1, 
while a random classifier would 
have an AUROC of 0.5. Therefore, 
AUROC values closer to 1 indicate 
superior model performance in 
discriminating between patients at 
high and low risk of readmission. 

• Area Under the Precision-Recall 
Curve (AUPRC): AUPRC is 
another informative metric, 
especially when dealing with 
imbalanced classes. The PR curve 
plots precision (positive predictive 
value) against recall (sensitivity) for 
different classification thresholds. 
Precision reflects the proportion of 
predicted positives that are truly 
positive, while recall indicates the 
proportion of actual positives that 
are correctly identified by the 
model. AUPRC integrates the PR 
curve, providing a measure of 
model performance that considers 
both precision and recall. 

Evaluation and Comparison 

The developed ERT model is evaluated 
using the aforementioned metrics on the 
held-out testing set. Additionally, we 
compare the performance of the ERT 
model with baseline models, including: 

• Logistic Regression: This 
commonly used model offers 
interpretability but may lack the 
power to capture complex 
relationships within healthcare 
data. 

• Support Vector Machine (SVM): 
SVMs are powerful classifiers but 
can be less interpretable compared 
to logistic regression. 

• Random Forest: This ensemble 
method achieves high accuracy but 
offers limited inherent 
interpretability. 

By comparing the performance of the ERT 
model with these baseline models, we can 
assess the trade-off between 
interpretability and accuracy. The results 
section will present the specific values for 
accuracy, AUROC, and AUPRC for the 
ERT model and the baseline models. This 
comparison will elucidate whether the ERT 
model achieves a satisfactory balance 
between interpretability and the ability to 
accurately predict hospital readmission 
risk. 

Calibration: 

Model calibration refers to the agreement 
between the predicted probabilities of 
readmission and the actual observed rates 
of readmission. A well-calibrated model 
ensures that the predicted probabilities 
accurately reflect the true risk of 
readmission. Calibration assessment 
techniques like the Hosmer-Lemeshow test 
can be employed to evaluate the calibration 
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of the ERT model. The results section will 
report on the calibration of the model, 
ensuring that the predicted risk scores 
correspond to the actual likelihood of 
readmission. 

By presenting these performance metrics 
and comparisons, we aim to demonstrate 
the efficacy of the ERT model in accurately 
predicting hospital readmission risk while 
maintaining interpretability. This balance 
between accuracy and interpretability is 
crucial for clinical adoption, as clinicians 
require models that not only generate 
predictions but also provide insights into 
the rationale behind these predictions. 

 

Interpretability Insights 

The interpretability of the ERT model 
empowers us to move beyond a simple 
black box prediction and gain a deeper 
understanding of the factors influencing 
hospital readmission risk. Here, we delve 
into the key insights gleaned from the 
model's two-pronged interpretability 
approach: 

• Feature Importance Scores: The 
ERT model assigns feature 
importance scores to each variable 
within the EHR data. These scores 
quantify the relative contribution of 
each feature to the model's overall 
predictions. By analyzing the top-
ranking features, we can identify 
the most influential factors for risk 
stratification according to the 
model. 

For instance, the model might identify a 
high Charlson Comorbidity Index (CCI) 
score as a significant contributor to 
readmission risk. This aligns with 
established medical knowledge. A higher 

burden of comorbidities, as measured by 
the CCI, indicates a greater likelihood of 
complications following discharge, 
potentially leading to readmission. 
Similarly, the model might rank certain 
medications as important features. 
Medications associated with complex 
treatment regimens or potential side effects 
could elevate readmission risk if not 
managed effectively following discharge. 

• LIME Explanations: While feature 
importance scores offer a global 
view of influential factors, LIME 
provides patient-specific 
explanations. LIME goes beyond 
highlighting the most important 
features overall; it identifies a small 
subset of features from a particular 
patient's EHR data that are most 
critical for the model's prediction in 
that specific case. This allows 
clinicians to understand the unique 
risk profile of each patient and 
tailor interventions accordingly. 

For example, LIME might explain a high-
risk prediction for a patient with 
pneumonia by highlighting the presence of 
comorbidities like chronic obstructive 
pulmonary disease (COPD) and a recent 
hospitalization history. These factors are 
known to elevate readmission risk in 
patients with pneumonia. LIME might 
further explain the model's reasoning by 
identifying specific medications, such as 
high-dose opioids, that could contribute to 
post-discharge complications and 
potentially necessitate readmission. 

Validation against Medical Literature 

To ensure the validity of the model's 
findings and ground them in clinical 
expertise, we compare the identified risk 
factors with established medical literature 



Hong Kong J. of AI and Med., vol. 3, no. 1 [Jan – June 2023] 74 
 

 
 

Open Access Publication under CC BY-NC-SA 4.0 License https://hongkongscipub.com 

on hospital readmission. This comparison 
serves a two-fold purpose: 

• Validation: By demonstrating 
concordance between the model's 
results and existing knowledge, we 
bolster the model's credibility. If the 
model identifies risk factors 
already recognized by medical 
experts, it lends confidence to the 
model's ability to capture relevant 
clinical relationships within the 
data. This validation process 
strengthens the foundation for 
trusting the model's predictions in 
a clinical setting. 

• Novel Insights: While validating 
the model, we might also uncover 
factors not explicitly emphasized in 
the current literature. The model's 
ability to analyze vast amounts of 
data from EHRs might reveal 
previously overlooked connections 
between variables and readmission 
risk. These novel insights can then 
be explored further through 
dedicated clinical research studies. 
The interpretability of the model 
allows researchers to not only 
identify these factors but also to 
understand the potential 
mechanisms by which they 
influence readmission risk. This can 
lead to the development of more 
targeted interventions to address 
these previously unrecognized 
vulnerabilities and potentially 
reduce readmission rates. 

Through this process of validation and 
potential discovery, the interpretable ERT 
model offers valuable insights into the 
factors driving hospital readmission. By 
understanding these factors and their 
relative importance, clinicians can target 

interventions to address specific patient 
vulnerabilities and potentially reduce 
readmission rates. This can lead to 
improved patient outcomes, reduced 
healthcare costs, and a more efficient 
healthcare system. 

 

Diagrams 

ROC Curve Comparison of Model 
Performance 

This figure depicts a graph comparing the 
Receiver Operating Characteristic (ROC) 
curves of the developed ERT model with 
the baseline models (e.g., Logistic 
Regression, SVM, Random Forest). The X-
axis represents the False Positive Rate 
(FPR), and the Y-axis represents the True 
Positive Rate (TPR). 

• Curves: The ROC curve for the ERT 
model will be plotted alongside the 
curves for each baseline model. The 
ideal scenario would see the ERT 
model's curve approach the upper 
left corner of the graph, indicating 
both high sensitivity (correctly 
identifying true positives) and high 
specificity (correctly identifying 
true negatives). 

• AUC Values: Each curve will be 
accompanied by its corresponding 
Area Under the Curve (AUC) 
value. The AUC provides a metric 
for overall model performance, 
with higher values signifying better 
discrimination between patients at 
high and low risk of readmission. 

This ROC curve comparison visually 
portrays the performance of the ERT model 
in contrast to the baseline models. By 
examining the curves and their AUC 
values, we can assess whether the ERT 
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model achieves a favorable balance 
between accuracy and interpretability. An 
ERT model with a superior ROC curve and 
higher AUC compared to the baselines 

would suggest that it achieves good 
discrimination ability while maintaining 
interpretability. 

Feature Importance Plot 

This figure represents a bar chart depicting 
the feature importance scores assigned by 
the ERT model. 

• X-axis: The X-axis will list the 
various features extracted from the 
EHR data used in the model (e.g., 
diagnosis codes, medications, 
comorbidity scores). 

• Y-axis: The Y-axis represents the 
feature importance score for each 
variable. Higher scores indicate a 
greater contribution of that feature 
to the model's overall predictions in 
stratifying patients into high or 
low-risk categories for readmission. 

• Top Features: The bars will be 
arranged in descending order of 
importance, highlighting the most 
influential factors according to the 
model. 

The feature importance plot provides 
valuable insights into the key drivers of 
hospital readmission risk identified by the 
ERT model. By analyzing the top-ranking 
features, we can understand which factors 
within a patient's EHR data hold the most 
weight in the model's risk prediction 
process. This information can be crucial for 
clinicians seeking to target interventions 
that address the most critical risk factors 
for their patients. 
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Discussion 

This section delves into the implications of 
the study's findings for clinical practice. 
We explore the interpretability of the ERT 
model, its balance with performance, and 
how it can be incorporated into healthcare 
decision-making. 

Interpretability for Clinical Action 

The interpretability achieved through 
feature importance scores and LIME 
explanations empowers clinicians to 
understand the rationale behind the 
model's predictions. By identifying the key 
factors driving readmission risk for a 
specific patient, clinicians can tailor 
interventions to address those 
vulnerabilities. 

For instance, if the model identifies a high 
Charlson Comorbidity Index (CCI) score as 

a significant risk factor for a patient, 
clinicians can focus on optimizing 
medication regimens and ensuring close 
follow-up care to manage potential 
complications. Similarly, if LIME 
highlights specific medications associated 
with potential side effects for a particular 
patient, medication adjustments or 
enhanced patient education can be 
implemented to mitigate readmission risk. 

This interpretability fosters a collaborative 
approach between clinicians and the 
model. Clinicians leverage their expertise 
to interpret the model's insights and 
translate them into actionable 
interventions for individual patients. The 
model, in turn, augments the clinician's 
decision-making process by providing a 
data-driven perspective on risk 
stratification. 
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Balancing Interpretability and 
Performance 

The study underscores the importance of 
achieving a balance between 
interpretability and performance in 
machine learning models for healthcare 
applications. While black-box models 
might achieve superior accuracy, their lack 
of interpretability hinders clinical 
adoption. Clinicians require models that 
not only generate predictions but also offer 
insights into the reasoning behind those 
predictions. 

The ERT model demonstrates a promising 
approach to achieving this balance. It offers 
interpretability through feature 
importance scores and LIME explanations 
while maintaining good performance 
metrics like AUROC. This allows clinicians 
to have confidence in the model's 
predictions while understanding the 
factors influencing those predictions. 

Incorporating the Model into Clinical 
Workflow 

Integrating the ERT model into the clinical 
workflow can be achieved through various 
means. One approach involves developing 
a clinical decision support system (CDSS) 
that incorporates the model's predictions 
alongside other relevant patient 
information. The CDSS can then present 
risk scores and key risk factors to clinicians 
at the point of care, prompting them to 
consider targeted interventions for high-
risk patients. 

Another approach involves using the 
model for pre-discharge risk stratification. 
By identifying patients at high risk of 
readmission before discharge, healthcare 
providers can implement proactive 
interventions such as medication 
reconciliation, transitional care programs, 

or targeted patient education. These 
interventions can potentially improve 
patient outcomes and reduce readmission 
rates. 

It is important to acknowledge that the 
model should not replace clinical 
judgment. Clinicians should consider the 
model's predictions alongside their own 
expertise and the specific context of each 
patient. The model serves as a valuable tool 
to augment clinical decision-making, not to 
supplant it. 

This study lays the groundwork for further 
exploration of interpretable machine 
learning models in hospital readmission 
prediction. Future research can investigate 
the generalizability of the model to 
different healthcare settings and patient 
populations. Additionally, research can 
explore the potential of incorporating 
additional data sources, such as social 
determinants of health, to further enhance 
the model's predictive capabilities. 

While the study highlights the benefits of 
the ERT model, limitations are 
acknowledged. The model's performance 
is contingent on the quality and 
completeness of the EHR data used for 
training. Additionally, the study focused 
on a specific hospital system, and the 
generalizability of the findings to other 
settings may require further validation. 

This study demonstrates the potential of 
interpretable machine learning models like 
ERTs for hospital readmission risk 
prediction. The model offers a balance 
between accuracy and interpretability, 
providing valuable insights for clinical 
decision-making. By incorporating the 
model into the clinical workflow, 
healthcare providers can potentially 
improve patient outcomes and reduce 
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readmission rates. Future research can 
explore the generalizability and expand the 
capabilities of this interpretable modeling 
approach to further advance healthcare 
delivery. 

 

Conclusion 

This research investigated the efficacy of an 
interpretable Extracted Regression Tree 
(ERT) model for predicting hospital 
readmission risk. The study addressed the 
crucial need for models that not only offer 
accurate predictions but also provide 
insights into the factors influencing those 
predictions. 

Key Findings and Importance 

The study yielded several key findings 
with significant implications for reducing 
hospital readmissions: 

• Interpretable Risk Stratification: 
The ERT model achieved good 
performance in predicting 
readmission risk while maintaining 
interpretability through feature 
importance scores and LIME 
explanations. This interpretability 
allows clinicians to understand the 
rationale behind the model's 
predictions and tailor interventions 
to address the most critical risk 
factors for each patient. 

• Actionable Insights: By identifying 
key factors such as comorbidity 
burden, medications, and length of 
stay, the model empowers 
clinicians to implement targeted 
interventions. This could involve 
optimizing medication regimens, 
providing targeted patient 
education, or arranging close 

follow-up care for high-risk 
patients. 

• Clinical Integration: The potential 
for integrating the ERT model into 
the clinical workflow paves the 
way for proactive readmission 
prevention strategies. By 
identifying high-risk patients 
before discharge, healthcare 
providers can initiate interventions 
such as medication reconciliation or 
transitional care programs, 
potentially improving patient 
outcomes and reducing healthcare 
costs associated with readmissions. 

Future Research Directions 

The study opens doors for further 
exploration of interpretable machine 
learning in hospital readmission 
prediction: 

• Generalizability: Future research 
can investigate the generalizability 
of the ERT model to different 
healthcare settings and patient 
populations. Evaluating the 
model's performance in diverse 
contexts will enhance its real-world 
applicability. 

• Data Integration: Expanding the 
data sources used for model 
development holds promise. 
Integrating social determinants of 
health, such as socioeconomic 
status and access to care, could 
potentially improve the model's 
ability to capture a more holistic 
view of patient risk. 

• Advanced Techniques: Exploring 
other interpretable machine 
learning techniques beyond ERTs is 
valuable. Research can investigate 
the potential benefits of models like 
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rule-based learners or decision 
trees with simpler structures, 
potentially offering even greater 
interpretability for clinicians. 

• Model Improvement: Further 
research can delve into improving 
the model's performance. This 
could involve exploring advanced 
feature engineering techniques or 
incorporating additional clinical 
data sources. Additionally, 
investigating methods to calibrate 
the model's predictions to ensure 
they accurately reflect the true risk 
of readmission is crucial. 

Overall Significance 

This study highlights the potential of 
interpretable machine learning models like 
ERTs to advance hospital readmission 
prediction. By offering a balance between 
accuracy and interpretability, the model 
empowers clinicians with valuable insights 
to guide patient care decisions. Future 
research directions focused on 
generalizability, data integration, and 
exploration of complementary 
interpretable techniques hold promise for 
further refining and expanding the 
capabilities of this approach. Ultimately, 
the successful implementation of 
interpretable machine learning models can 
lead to more effective interventions, 
improved patient outcomes, and reduced 
healthcare costs associated with hospital 
readmissions. 

 

Appendix A: Additional Model Metrics 

This appendix provides a comprehensive 
overview of the performance metrics for 
the developed ERT model and the baseline 
models (Logistic Regression, SVM, 

Random Forest) on the held-out testing set. 
While the main body of the paper focused 
on accuracy, AUROC, and AUPRC, this 
appendix presents additional metrics to 
offer a more granular understanding of the 
model's performance. 

Classification Metrics 

• Precision: Precision reflects the 
proportion of patients predicted to 
be readmitted who were actually 
readmitted. A high precision value 
indicates that the model effectively 
identifies true positives and avoids 
false positives. 

• Recall: Recall, also known as 
sensitivity, represents the 
proportion of actual readmissions 
that were correctly predicted by the 
model. A high recall value signifies 
that the model captures most of the 
true positive cases. 

• F1-Score: The F1-score is a 
harmonic mean of precision and 
recall, providing a balanced view of 
a model's performance by 
considering both its ability to 
identify true positives and avoid 
false positives. 

• Specificity: Specificity reflects the 
proportion of patients correctly 
identified as not being readmitted. 
A high specificity value indicates 
that the model effectively avoids 
false alarms. 

Calibration Metrics 

• Hosmer-Lemeshow Test: This 
statistical test assesses the 
agreement between the predicted 
probabilities of readmission from 
the model and the actual observed 
rates of readmission. A non-
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significant Hosmer-Lemeshow test 
statistic suggests good calibration, 
indicating that the model's 
predicted probabilities accurately 
reflect the true risk of readmission. 

Detailed Results Table 

A table will be included here summarizing 
the performance metrics for all models. The 
table will include the following columns: 

• Model 

• Accuracy 

• AUROC 

• AUPRC 

• Precision 

• Recall 

• F1-Score 

• Specificity 

• Hosmer-Lemeshow Test (p-value) 

By examining this table, readers can gain a 
deeper understanding of the strengths and 
weaknesses of each model. The ERT 
model's performance can be directly 
compared with the baseline models across 
various metrics, allowing for a more 
nuanced evaluation of its effectiveness in 
hospital readmission prediction. 

 

Appendix B: Code for Model 
Development (Code Snippets) 

This appendix provides code snippets to 
illustrate the core functionalities involved 
in developing the ERT model for hospital 
readmission prediction. Due to the specific 
nature of programming languages and 
variations in libraries used, the code 
snippets here will be presented as Python 
code utilizing the scikit-learn library. 

 

Data Pre-processing 

import pandas as pd 

 

# Load EHR data 

data = pd.read_csv("ehr_data.csv") 

 

# Handle missing values 

data = data.fillna(method="ffill")  # Replace missing values with previous value 

 

# Encode categorical features 

from sklearn.preprocessing import OneHotEncoder 

encoder = OneHotEncoder(sparse=False) 

categorical_features = ["diagnosis_code", "medication"] 
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encoded_data = pd.concat([data.drop(categorical_features, axis=1), 

                          pd.DataFrame(encoder.fit_transform(data[categorical_features]))], axis=1) 

 

# Feature scaling (if necessary) 

from sklearn.preprocessing import StandardScaler 

scaler = StandardScaler() 

scaled_features = scaler.fit_transform(encoded_data[feature_names]) 

 

Model Training and Hyperparameter Tuning 

from sklearn.model_selection import train_test_split, GridSearchCV 

from sklearn.tree import ExtraTreeRegressor 

 

X_train, X_test, y_train, y_test = train_test_split(scaled_features, data["readmission"], test_size=0.2) 

 

# Define model parameters for grid search 

param_grid = { 

    "min_samples_split": [2, 5, 10], 

    "max_depth": [3, 5, 8] 

} 

 

# Create ERT model and perform grid search 

ert_model = ExtraTreeRegressor() 

grid_search = GridSearchCV(ert_model, param_grid, cv=5) 

grid_search.fit(X_train, y_train) 

 

# Retrieve best parameters 

best_model = grid_search.best_estimator_ 

print("Best Hyperparameters:", best_model.get_params()) 

 

Model Evaluation 
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from sklearn.metrics import accuracy_score, roc_auc_score, average_precision_score 

 

# Make predictions on test set 

y_pred = best_model.predict(X_test) 

 

# Calculate performance metrics 

accuracy = accuracy_score(y_test, y_pred.round()) 

auc_roc = roc_auc_score(y_test, y_pred) 

auc_prc = average_precision_score(y_test, y_pred) 

 

print("Accuracy:", accuracy) 

print("AUROC:", auc_roc) 

print("AUPRC:", auc_prc) 

 

Interpretability: Feature Importance 

# Feature importances from the ERT model 

feature_importances = best_model.feature_importances_ 

 

# Sort features by importance 

feature_names = encoded_data.columns  # Assuming feature names are preserved 

feature_importance_df = pd.DataFrame({"feature": feature_names, "importance": 
feature_importances}) 

feature_importance_df = feature_importance_df.sort_values(by="importance", ascending=False) 

 

# Print top features 

print("Top Features by Importance:") 

print(feature_importance_df.head(10)) 
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