Vol. 4 No. 2 (2024): Hong Kong Journal of AI and Medicine
Articles

Transfer Learning in Cybersecurity: Enhancing Malware Classification and Detection

John Smith
PhD, Associate Professor of Computer Science, University of California, Los Angeles, USA

Published 10-10-2024

Keywords

  • transfer learning,
  • cybersecurity

How to Cite

[1]
J. Smith, “Transfer Learning in Cybersecurity: Enhancing Malware Classification and Detection”, Hong Kong J. of AI and Med., vol. 4, no. 2, pp. 108–114, Oct. 2024, Accessed: Jan. 17, 2025. [Online]. Available: https://hongkongscipub.com/index.php/hkjaim/article/view/72

Abstract

The growing sophistication of malware poses significant challenges to cybersecurity professionals. Traditional machine learning approaches in malware classification often require vast amounts of labeled data, which may not always be available. Transfer learning, a technique where knowledge gained from one task is applied to another, presents a promising solution to enhance malware detection and classification. This paper explores the application of transfer learning in cybersecurity, specifically focusing on its role in improving malware classification and detection. It discusses various transfer learning methods, their effectiveness in leveraging pre-trained models, and case studies demonstrating their application in real-world scenarios. The findings suggest that transfer learning can significantly improve the accuracy and efficiency of malware detection systems, thus enhancing the overall security posture of organizations.

Downloads

Download data is not yet available.

References

  1. Vangoor, Vinay Kumar Reddy, et al. "Zero Trust Architecture: Implementing Microsegmentation in Enterprise Networks." Journal of Artificial Intelligence Research and Applications 4.1 (2024): 512-538.
  2. Gayam, Swaroop Reddy. "Artificial Intelligence in E-Commerce: Advanced Techniques for Personalized Recommendations, Customer Segmentation, and Dynamic Pricing." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 105-150.
  3. Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Predictive Maintenance of Banking IT Infrastructure: Advanced Techniques, Applications, and Real-World Case Studies." Journal of Deep Learning in Genomic Data Analysis 2.1 (2022): 86-122.
  4. Putha, Sudharshan. "AI-Driven Predictive Analytics for Maintenance and Reliability Engineering in Manufacturing." Journal of AI in Healthcare and Medicine 2.1 (2022): 383-417.
  5. Sahu, Mohit Kumar. "Machine Learning for Personalized Marketing and Customer Engagement in Retail: Techniques, Models, and Real-World Applications." Journal of Artificial Intelligence Research and Applications 2.1 (2022): 219-254.
  6. Kasaraneni, Bhavani Prasad. "AI-Driven Policy Administration in Life Insurance: Enhancing Efficiency, Accuracy, and Customer Experience." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 407-458.
  7. Kondapaka, Krishna Kanth. "AI-Driven Demand Sensing and Response Strategies in Retail Supply Chains: Advanced Models, Techniques, and Real-World Applications." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 459-487.
  8. Kasaraneni, Ramana Kumar. "AI-Enhanced Process Optimization in Manufacturing: Leveraging Data Analytics for Continuous Improvement." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 488-530.
  9. Pattyam, Sandeep Pushyamitra. "AI-Enhanced Natural Language Processing: Techniques for Automated Text Analysis, Sentiment Detection, and Conversational Agents." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 371-406.
  10. Kuna, Siva Sarana. "The Role of Natural Language Processing in Enhancing Insurance Document Processing." Journal of Bioinformatics and Artificial Intelligence 3.1 (2023): 289-335.
  11. Godbole, Aditi, Jabin Geevarghese George, and Smita Shandilya. "Leveraging Long-Context Large Language Models for Multi-Document Understanding and Summarization in Enterprise Applications." arXiv preprint arXiv:2409.18454 (2024).
  12. P. Katari, V. Rama Raju Alluri, A. K. P. Venkata, L. Gudala, and S. Ganesh Reddy, “Quantum-Resistant Cryptography: Practical Implementations for Post-Quantum Security”, Asian J. Multi. Res. Rev., vol. 1, no. 2, pp. 283–307, Dec. 2020
  13. Karunakaran, Arun Rasika. "A Predictive AI-Driven Model for Impact of Demographic Factors in Demand Transfer for Retail Sustainability." Australian Journal of Machine Learning Research & Applications 3.2 (2023): 476-515.
  14. Sengottaiyan, Krishnamoorthy, and Manojdeep Singh Jasrotia. "SLP (Systematic Layout Planning) for Enhanced Plant Layout Efficiency." International Journal of Science and Research (IJSR) 13.6 (2024): 820-827.
  15. Namperumal, Gunaseelan, Akila Selvaraj, and Deepak Venkatachalam. "Machine Learning Models Trained on Synthetic Transaction Data: Enhancing Anti-Money Laundering (AML) Efforts in the Financial Services Industry." Journal of Artificial Intelligence Research 2.2 (2022): 183-218.
  16. Soundarapandiyan, Rajalakshmi, Praveen Sivathapandi, and Debasish Paul. "AI-Driven Synthetic Data Generation for Financial Product Development: Accelerating Innovation in Banking and Fintech through Realistic Data Simulation." Journal of Artificial Intelligence Research and Applications 2.2 (2022): 261-303.
  17. Pradeep Manivannan, Priya Ranjan Parida, and Chandan Jnana Murthy, “Strategic Implementation and Metrics of Personalization in E-Commerce Platforms: An In-Depth Analysis”, Journal of AI-Assisted Scientific Discovery, vol. 1, no. 2, pp. 59–96, Aug. 2021
  18. Yellepeddi, Sai Manoj, et al. "Federated Learning for Collaborative Threat Intelligence Sharing: A Practical Approach." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 146-167.
  19. R. Collobert and J. Weston, "A unified architecture for natural language processing: Deep neural networks with multitask learning," in Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 160-167.
  20. M. Abadi et al., "TensorFlow: A system for large-scale machine learning," in Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 2016, pp. 265-283.