Vol. 4 No. 2 (2024): Hong Kong Journal of AI and Medicine
Articles

Deep Learning-based Analysis of Electronic Health Records for Disease Diagnosis: Utilizing deep learning techniques to analyze electronic health records and aid in disease diagnosis

Dr. Michael Petrov
Professor of Artificial Intelligence, Lomonosov Moscow State University, Russia

Published 27-09-2024

Keywords

  • Recurrent Neural Networks,
  • Healthcare

How to Cite

[1]
Dr. Michael Petrov, “Deep Learning-based Analysis of Electronic Health Records for Disease Diagnosis: Utilizing deep learning techniques to analyze electronic health records and aid in disease diagnosis”, Hong Kong J. of AI and Med., vol. 4, no. 2, pp. 1–8, Sep. 2024, Accessed: Jan. 17, 2025. [Online]. Available: https://hongkongscipub.com/index.php/hkjaim/article/view/33

Abstract

The use of deep learning in healthcare, particularly for analyzing electronic health records (EHRs) to aid in disease diagnosis, has shown promising results in recent years. This paper explores the application of deep learning techniques, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), in processing EHR data for disease diagnosis. We discuss the challenges and opportunities in utilizing EHRs for deep learning-based diagnosis and present a comprehensive review of existing literature. Additionally, we provide insights into the future directions of this field, including the potential for personalized medicine and improved patient outcomes.

Downloads

Download data is not yet available.

References

  1. Saeed, A., Zahoor, A., Husnain, A., & Gondal, R. M. (2024). Enhancing E-commerce furniture shopping with AR and AI-driven 3D modeling. International Journal of Science and Research Archive, 12(2), 040-046.
  2. Shahane, Vishal. "A Comprehensive Decision Framework for Modern IT Infrastructure: Integrating Virtualization, Containerization, and Serverless Computing to Optimize Resource Utilization and Performance." Australian Journal of Machine Learning Research & Applications 3.1 (2023): 53-75.
  3. Biswas, Anjanava, and Wrick Talukdar. "Guardrails for trust, safety, and ethical development and deployment of Large Language Models (LLM)." Journal of Science & Technology 4.6 (2023): 55-82.
  4. N. Pushadapu, “Machine Learning Models for Identifying Patterns in Radiology Imaging: AI-Driven Techniques and Real-World Applications”, Journal of Bioinformatics and Artificial Intelligence, vol. 4, no. 1, pp. 152–203, Apr. 2024
  5. Talukdar, Wrick, and Anjanava Biswas. "Improving Large Language Model (LLM) fidelity through context-aware grounding: A systematic approach to reliability and veracity." arXiv preprint arXiv:2408.04023 (2024).
  6. Chen, Jan-Jo, Ali Husnain, and Wei-Wei Cheng. "Exploring the Trade-Off Between Performance and Cost in Facial Recognition: Deep Learning Versus Traditional Computer Vision." Proceedings of SAI Intelligent Systems Conference. Cham: Springer Nature Switzerland, 2023.
  7. Alomari, Ghaith, et al. “AI-Driven Integrated Hardware and Software Solution for EEG-Based Detection of Depression and Anxiety.” International Journal for Multidisciplinary Research, vol. 6, no. 3, May 2024, pp. 1–24.
  8. Choi, J. E., Qiao, Y., Kryczek, I., Yu, J., Gurkan, J., Bao, Y., ... & Chinnaiyan, A. M. (2024). PIKfyve, expressed by CD11c-positive cells, controls tumor immunity. Nature Communications, 15(1), 5487.
  9. Borker, P., Bao, Y., Qiao, Y., Chinnaiyan, A., Choi, J. E., Zhang, Y., ... & Zou, W. (2024). Targeting the lipid kinase PIKfyve upregulates surface expression of MHC class I to augment cancer immunotherapy. Cancer Research, 84(6_Supplement), 7479-7479.
  10. Gondal, Mahnoor Naseer, and Safee Ullah Chaudhary. "Navigating multi-scale cancer systems biology towards model-driven clinical oncology and its applications in personalized therapeutics." Frontiers in Oncology 11 (2021): 712505.
  11. Saeed, Ayesha, et al. "A Comparative Study of Cat Swarm Algorithm for Graph Coloring Problem: Convergence Analysis and Performance Evaluation." International Journal of Innovative Research in Computer Science & Technology 12.4 (2024): 1-9.
  12. Pelluru, Karthik. "Enhancing Cyber Security: Strategies, Challenges, and Future Directions." Journal of Engineering and Technology 1.2 (2019): 1-11.
  13. Tatineni, Sumanth, and Sandeep Chinamanagonda. "Leveraging Artificial Intelligence for Predictive Analytics in DevOps: Enhancing Continuous Integration and Continuous Deployment Pipelines for Optimal Performance." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 103-138.