Vol. 4 No. 2 (2024): Hong Kong Journal of AI and Medicine
Articles

AI-Enhanced Investment Risk Assessment

Dr. Ekaterina Ovchinnikova
Associate Professor of Applied Mathematics and Computer Science, Saint Petersburg State University, Russia

Published 11-10-2024

Keywords

  • Risk Assessment

How to Cite

[1]
D. E. Ovchinnikova, “AI-Enhanced Investment Risk Assessment”, Hong Kong J. of AI and Med., vol. 4, no. 2, pp. 82–95, Oct. 2024, Accessed: Jan. 17, 2025. [Online]. Available: https://hongkongscipub.com/index.php/hkjaim/article/view/84

Abstract

We will describe work in progress to enhance investment risk assessment using AI methods. Specifically, AI is applied to news to understand the potential impact on investments. Key terms are identified in the news, which are aggregated to expose general requirements the news is making of individuals and organizations involved in investment. We introduce the concept of a Concept Communication Contract indicating some notions that are not directly and unambiguously communicated but are understood by the context. From requirements, news provides upon key terms, risk metrics can be incorporated into existing risk models for risk assessment at the individual and portfolio holding level. Commercial products are under development, and field testing from an initial customer base is providing feedback helping evolve the products. This feedback will contribute to the final outcome of this work.

Downloads

Download data is not yet available.

References

  1. Tamanampudi, Venkata Mohit. "Automating CI/CD Pipelines with Machine Learning Algorithms: Optimizing Build and Deployment Processes in DevOps Ecosystems." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 810-849.
  2. Pasupuleti, Vikram, et al. "Enhancing supply chain agility and sustainability through machine learning: Optimization techniques for logistics and inventory management." Logistics 8.3 (2024): 73.
  3. Thota, Shashi, et al. "Federated Learning: Privacy-Preserving Collaborative Machine Learning." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 168-190.
  4. J. Singh, “Advancements in AI-Driven Autonomous Robotics: Leveraging Deep Learning for Real-Time Decision Making and Object Recognition”, J. of Artificial Int. Research and App., vol. 3, no. 1, pp. 657–697, Apr. 2023
  5. Alluri, Venkat Rama Raju, et al. "Serverless Computing for DevOps: Practical Use Cases and Performance Analysis." Distributed Learning and Broad Applications in Scientific Research 4 (2018): 158-180.
  6. Machireddy, Jeshwanth Reddy. "Assessing the Impact of Medicare Broker Commissions on Enrollment Trends and Consumer Costs: A Data-Driven Analysis." Journal of AI in Healthcare and Medicine 2.1 (2022): 501-518.
  7. S. Chitta, S. Thota, S. Manoj Yellepeddi, A. Kumar Reddy, and A. K. P. Venkata, “Multimodal Deep Learning: Integrating Vision and Language for Real-World Applications”, Asian J. Multi. Res. Rev., vol. 1, no. 2, pp. 262–282, Nov. 2020
  8. Ahmad, Tanzeem, et al. "Hybrid Project Management: Combining Agile and Traditional Approaches." Distributed Learning and Broad Applications in Scientific Research 4 (2018): 122-145.
  9. Tamanampudi, Venkata Mohit. "CoWPE: Adaptive Context Window Adjustment in LLMs for Complex Input Queries." Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023 5.1 (2024): 438-450.
  10. Thota, Shashi, et al. "Few-Shot Learning in Computer Vision: Practical Applications and Techniques." Human-Computer Interaction Perspectives 3.1 (2023): 29-59.
  11. Tamanampudi, Venkata Mohit. "Leveraging Machine Learning for Dynamic Resource Allocation in DevOps: A Scalable Approach to Managing Microservices Architectures." Journal of Science & Technology 1.1 (2020): 709-748.
  12. J. Singh, “Autonomous Vehicle Swarm Robotics: Real-Time Coordination Using AI for Urban Traffic and Fleet Management”, Journal of AI-Assisted Scientific Discovery, vol. 3, no. 2, pp. 1–44, Aug. 2023
  13. S. Kumari, “Cloud Transformation for Mobile Products: Leveraging AI to Automate Infrastructure Management, Scalability, and Cost Efficiency”, J. Computational Intel. & Robotics, vol. 4, no. 1, pp. 130–151, Jan. 2024.