AI-driven Electronic Health Record Curation for Clinical Research: Developing AI algorithms to curate electronic health records for use in clinical research studies
Published 28-09-2024
Keywords
- Electronic Health Records,
- Healthcare Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
How to Cite
Abstract
In the realm of clinical research, the extraction and curation of relevant information from electronic health records (EHRs) pose significant challenges. Manual curation is labor-intensive, time-consuming, and prone to errors. This paper proposes an AI-driven approach to streamline the curation process, leveraging machine learning algorithms to extract key data points from EHRs efficiently. By automating this process, researchers can expedite data collection, enhance data quality, and ultimately improve the efficiency of clinical research studies.
Downloads
References
- Saeed, A., Zahoor, A., Husnain, A., & Gondal, R. M. (2024). Enhancing E-commerce furniture shopping with AR and AI-driven 3D modeling. International Journal of Science and Research Archive, 12(2), 040-046.
- Shahane, Vishal. "A Comprehensive Decision Framework for Modern IT Infrastructure: Integrating Virtualization, Containerization, and Serverless Computing to Optimize Resource Utilization and Performance." Australian Journal of Machine Learning Research & Applications 3.1 (2023): 53-75.
- Biswas, Anjanava, and Wrick Talukdar. "Guardrails for trust, safety, and ethical development and deployment of Large Language Models (LLM)." Journal of Science & Technology 4.6 (2023): 55-82.
- N. Pushadapu, “Machine Learning Models for Identifying Patterns in Radiology Imaging: AI-Driven Techniques and Real-World Applications”, Journal of Bioinformatics and Artificial Intelligence, vol. 4, no. 1, pp. 152–203, Apr. 2024
- Pelluru, Karthik. "Prospects and Challenges of Big Data Analytics in Medical Science." Journal of Innovative Technologies 3.1 (2020): 1-18.
- Chen, Jan-Jo, Ali Husnain, and Wei-Wei Cheng. "Exploring the Trade-Off Between Performance and Cost in Facial Recognition: Deep Learning Versus Traditional Computer Vision." Proceedings of SAI Intelligent Systems Conference. Cham: Springer Nature Switzerland, 2023.
- Alomari, Ghaith, et al. “AI-Driven Integrated Hardware and Software Solution for EEG-Based Detection of Depression and Anxiety.” International Journal for Multidisciplinary Research, vol. 6, no. 3, May 2024, pp. 1–24.
- Choi, J. E., Qiao, Y., Kryczek, I., Yu, J., Gurkan, J., Bao, Y., ... & Chinnaiyan, A. M. (2024). PIKfyve, expressed by CD11c-positive cells, controls tumor immunity. Nature Communications, 15(1), 5487.
- Borker, P., Bao, Y., Qiao, Y., Chinnaiyan, A., Choi, J. E., Zhang, Y., ... & Zou, W. (2024). Targeting the lipid kinase PIKfyve upregulates surface expression of MHC class I to augment cancer immunotherapy. Cancer Research, 84(6_Supplement), 7479-7479.
- Gondal, Mahnoor Naseer, and Safee Ullah Chaudhary. "Navigating multi-scale cancer systems biology towards model-driven clinical oncology and its applications in personalized therapeutics." Frontiers in Oncology 11 (2021): 712505.
- Saeed, Ayesha, et al. "A Comparative Study of Cat Swarm Algorithm for Graph Coloring Problem: Convergence Analysis and Performance Evaluation." International Journal of Innovative Research in Computer Science & Technology 12.4 (2024): 1-9.
- Pelluru, Karthik. "Enhancing Cyber Security: Strategies, Challenges, and Future Directions." Journal of Engineering and Technology 1.2 (2019): 1-11.
- Tatineni, Sumanth. Integrating Artificial Intelligence with DevOps: Advanced Techniques, Predictive Analytics, and Automation for Real-Time Optimization and Security in Modern Software Development. Libertatem Media Private Limited, 2024.