Vol. 3 No. 2 (2023): Hong Kong Journal of AI and Medicine
Articles

AI-Based Solutions for Enhancing Health Data Integration: Leveraging Machine Learning to Combine Electronic Health Records, Genomic Data, and Wearable Sensors

Dr. Carlos Jiménez
Professor of Computer Science, University of Costa Rica
Cover

Published 16-12-2023

Keywords

  • Health Data Integration,
  • Electronic Health Records,
  • Genomic Data,
  • Wearable Sensors

How to Cite

[1]
Dr. Carlos Jiménez, “AI-Based Solutions for Enhancing Health Data Integration: Leveraging Machine Learning to Combine Electronic Health Records, Genomic Data, and Wearable Sensors”, Hong Kong J. of AI and Med., vol. 3, no. 2, pp. 17–31, Dec. 2023, Accessed: Jan. 17, 2025. [Online]. Available: https://hongkongscipub.com/index.php/hkjaim/article/view/51

Abstract

Health data integration is becoming increasingly important to create a comprehensive picture of patient health status and needs, especially as these extend beyond the clinical setting. There is agreement among health data regulators that integrating at least three domains is relevant if the aim is clinical utility. Mapping the genomes of patients and controlling the transcriptome and proteome profiles have begun to be important when creating individualized drug treatment plans. Health data collected using wearable sensors are also informative about patient behavior and response to non-genomic variables. Wearables provide information about activities of daily living, sleep, and some body functions. On the one hand, the problem with these independent data sources that contribute data from these domains is that they are all independent, causing us to lose the bigger picture. Therefore, it is important to use AI and machine learning techniques that can integrate and align such a majority of data from both non-invasive and invasive sources. This paper briefly discusses potential integration techniques of electronic health records, genetics, and wearable data and highlights some findings.

Downloads

Download data is not yet available.

References

  1. Pushadapu, Navajeevan. "AI and Seamless Data Flow to Health Information Exchanges (HIE): Advanced Techniques and Real-World Applications." Journal of Machine Learning in Pharmaceutical Research 2.1 (2022): 10-55.
  2. Bao, Y.; Qiao, Y.; Choi, J.E.; Zhang, Y.; Mannan, R.; Cheng, C.; He, T.; Zheng, Y.; Yu, J.; Gondal, M.; et al. Targeting the lipid kinase PIKfyve upregulates surface expression of MHC class I to augment cancer immunotherapy. Proc. Natl. Acad. Sci. USA 2023, 120, e2314416120.
  3. Gayam, Swaroop Reddy. "AI for Supply Chain Visibility in E-Commerce: Techniques for Real-Time Tracking, Inventory Management, and Demand Forecasting." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 218-251.
  4. Nimmagadda, Venkata Siva Prakash. "AI-Powered Risk Management and Mitigation Strategies in Finance: Advanced Models, Techniques, and Real-World Applications." Journal of Science & Technology 1.1 (2020): 338-383.
  5. Putha, Sudharshan. "AI-Driven Metabolomics: Uncovering Metabolic Pathways and Biomarkers for Disease Diagnosis and Treatment." Distributed Learning and Broad Applications in Scientific Research 6 (2020): 354-391.
  6. Sahu, Mohit Kumar. "Machine Learning Algorithms for Enhancing Supplier Relationship Management in Retail: Techniques, Tools, and Real-World Case Studies." Distributed Learning and Broad Applications in Scientific Research 6 (2020): 227-271.
  7. Kasaraneni, Bhavani Prasad. "Advanced Machine Learning Algorithms for Loss Prediction in Property Insurance: Techniques and Real-World Applications." Journal of Science & Technology 1.1 (2020): 553-597.
  8. Kondapaka, Krishna Kanth. "Advanced AI Techniques for Optimizing Claims Management in Insurance: Models, Applications, and Real-World Case Studies." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 637-668.
  9. Kasaraneni, Ramana Kumar. "AI-Enhanced Cybersecurity in Smart Manufacturing: Protecting Industrial Control Systems from Cyber Threats." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 747-784.
  10. Pattyam, Sandeep Pushyamitra. "AI in Data Science for Healthcare: Advanced Techniques for Disease Prediction, Treatment Optimization, and Patient Management." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 417-455.
  11. Kuna, Siva Sarana. "AI-Powered Techniques for Claims Triage in Property Insurance: Models, Tools, and Real-World Applications." Australian Journal of Machine Learning Research & Applications 1.1 (2021): 208-245.
  12. Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Automated Loan Underwriting in Banking: Advanced Models, Techniques, and Real-World Applications." Journal of Artificial Intelligence Research and Applications 2.1 (2022): 174-218.
  13. Pushadapu, Navajeevan. "AI-Enhanced Techniques for Pattern Recognition in Radiology Imaging: Applications, Models, and Case Studies." Journal of Bioinformatics and Artificial Intelligence 2.1 (2022): 153-190.
  14. Gayam, Swaroop Reddy. "AI-Driven Customer Support in E-Commerce: Advanced Techniques for Chatbots, Virtual Assistants, and Sentiment Analysis." Distributed Learning and Broad Applications in Scientific Research 6 (2020): 92-123.
  15. Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence and Blockchain Integration for Enhanced Security in Insurance: Techniques, Models, and Real-World Applications." African Journal of Artificial Intelligence and Sustainable Development 1.2 (2021): 187-224.
  16. Putha, Sudharshan. "AI-Driven Molecular Docking Simulations: Enhancing the Precision of Drug-Target Interactions in Computational Chemistry." African Journal of Artificial Intelligence and Sustainable Development 1.2 (2021): 260-300.
  17. Sahu, Mohit Kumar. "Machine Learning for Anti-Money Laundering (AML) in Banking: Advanced Techniques, Models, and Real-World Case Studies." Journal of Science & Technology 1.1 (2020): 384-424.
  18. Kasaraneni, Bhavani Prasad. "Advanced Artificial Intelligence Techniques for Predictive Analytics in Life Insurance: Enhancing Risk Assessment and Pricing Accuracy." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 547-588.
  19. Kondapaka, Krishna Kanth. "Advanced AI Techniques for Retail Supply Chain Sustainability: Models, Applications, and Real-World Case Studies." Journal of Science & Technology 1.1 (2020): 636-669.
  20. Kasaraneni, Ramana Kumar. "AI-Enhanced Energy Management Systems for Electric Vehicles: Optimizing Battery Performance and Longevity." Journal of Science & Technology 1.1 (2020): 670-708.
  21. Pattyam, Sandeep Pushyamitra. "AI in Data Science for Predictive Analytics: Techniques for Model Development, Validation, and Deployment." Journal of Science & Technology 1.1 (2020): 511-552.
  22. Kuna, Siva Sarana. "AI-Powered Solutions for Automated Underwriting in Auto Insurance: Techniques, Tools, and Best Practices." Journal of Science & Technology 1.1 (2020): 597-636.