Vol. 3 No. 2 (2023): Hong Kong Journal of AI and Medicine
Articles

Deep Learning for Drug Interaction Prediction: Improving Personalized Medicine

Michael Sanders
Ph.D., Associate Professor, Department of Computational Biology, Stanford University, California, USA
Cover

Published 02-12-2023

Keywords

  • deep learning,
  • drug interaction prediction

How to Cite

[1]
M. Sanders, “Deep Learning for Drug Interaction Prediction: Improving Personalized Medicine”, Hong Kong J. of AI and Med., vol. 3, no. 2, pp. 24–31, Dec. 2023, Accessed: Jan. 18, 2025. [Online]. Available: https://hongkongscipub.com/index.php/hkjaim/article/view/59

Abstract

This paper discusses the application of deep learning models for predicting drug interactions, a critical aspect of personalized medicine. As personalized healthcare advances, the ability to predict how different drugs interact with one another becomes vital in designing optimal treatment regimens. Adverse drug reactions (ADRs) and drug-drug interactions (DDIs) pose significant risks to patients, particularly those undergoing complex therapies involving multiple medications. Deep learning methods, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs), provide tools for analyzing complex biomedical data and predicting these interactions with high accuracy. This paper examines various deep learning techniques employed in drug interaction prediction, focusing on their potential to improve patient outcomes by minimizing adverse effects. It also discusses challenges, such as data heterogeneity and model interpretability, and explores future directions in this evolving field.

Downloads

Download data is not yet available.

References

  1. Gayam, Swaroop Reddy. "Deep Learning for Predictive Maintenance: Advanced Techniques for Fault Detection, Prognostics, and Maintenance Scheduling in Industrial Systems." Journal of Deep Learning in Genomic Data Analysis 2.1 (2022): 53-85.
  2. Venkata, Ashok Kumar Pamidi, et al. "Reinforcement Learning for Autonomous Systems: Practical Implementations in Robotics." Distributed Learning and Broad Applications in Scientific Research 4 (2018): 146-157.
  3. Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Supply Chain Visibility and Transparency in Retail: Advanced Techniques, Models, and Real-World Case Studies." Journal of Machine Learning in Pharmaceutical Research 3.1 (2023): 87-120.
  4. Putha, Sudharshan. "AI-Driven Predictive Maintenance for Smart Manufacturing: Enhancing Equipment Reliability and Reducing Downtime." Journal of Deep Learning in Genomic Data Analysis 2.1 (2022): 160-203.
  5. Sahu, Mohit Kumar. "Advanced AI Techniques for Predictive Maintenance in Autonomous Vehicles: Enhancing Reliability and Safety." Journal of AI in Healthcare and Medicine 2.1 (2022): 263-304.
  6. Kondapaka, Krishna Kanth. "AI-Driven Predictive Maintenance for Insured Assets: Advanced Techniques, Applications, and Real-World Case Studies." Journal of AI in Healthcare and Medicine 1.2 (2021): 146-187.
  7. Kasaraneni, Ramana Kumar. "AI-Enhanced Telematics Systems for Fleet Management: Optimizing Route Planning and Resource Allocation." Journal of AI in Healthcare and Medicine 1.2 (2021): 187-222.
  8. Pattyam, Sandeep Pushyamitra. "Artificial Intelligence in Cybersecurity: Advanced Methods for Threat Detection, Risk Assessment, and Incident Response." Journal of AI in Healthcare and Medicine 1.2 (2021): 83-108.
  9. Ahmad, Tanzeem, et al. "Explainable AI: Interpreting Deep Learning Models for Decision Support." Advances in Deep Learning Techniques 4.1 (2024): 80-108.
  10. G. E. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, Nov. 2012.
  11. R. Collobert and J. Weston, "A unified architecture for natural language processing: Deep neural networks with multitask learning," in Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 160-167.
  12. M. Abadi et al., "TensorFlow: A system for large-scale machine learning," in Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 2016, pp. 265-283.
  13. Y. Zhang and Q. Yang, "A survey on multi-task learning," IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 12, pp. 5586-5609, Dec. 2022.
  14. Y. Wang, Q. Chen, and W. Zhu, "Zero-shot learning: A comprehensive review," IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 7, pp. 2172-2188, Jul. 2019.
  15. D. Bahdanau, K. Cho, and Y. Bengio, "Neural machine translation by jointly learning to align and translate," in Proceedings of the 3rd International Conference on Learning Representations (ICLR), 2015.
  16. M. I. Jordan and T. M. Mitchell, "Machine learning: Trends, perspectives, and prospects," Science, vol. 349, no. 6245, pp. 255-260, 2015.
  17. J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of deep bidirectional transformers for language understanding," in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019, pp. 4171-4186.
  18. A. Vaswani et al., "Attention is all you need," in Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS), 2017, pp. 5998-6008.